The PNW (Idaho, Oregon, and Washington) STEEP program expects to be funded for the current Federal fiscal year (FY2007) by a special $550,000 to $650,000 research grant in the USDA-CSREES budget. Both individual and team (two or more investigators that actively participate in the proposed work and receive funding) project proposals are welcome. Individual projects will be funded for a maximum of three years at a maximum of $25,000 per year. Team projects also will be funded for a maximum of three years with a maximum funding level of about $150,000 for the duration of the study.

A strategic planning session was held at the 2006 STEEP research review to develop a list of research and extension priority areas (see page 3). Proposals that address these priority areas are specifically requested by the STEEP Joint Coordinating Committee. Proposals that address near, medium and long-term high risk issues associated with the general STEEP objectives (see pages 3-4) also will be considered. Proposals should clearly state how the research addresses soil, air, and/or water quality as it relates to PNW dry land and irrigated small grain cereal-based cropping systems. Where possible, researchers are encouraged to cooperate with existing projects (see attachment 1, page 5). We encourage collaborative, multi-state projects. When applicable, each proposal should include an economic justification and analysis.

It is important to disseminate information from STEEP funded research projects. At least one state or Pacific Northwest extension article (bulletin) or a Conservation Tillage Update article is required for all funded STEEP projects.

Investigators must acknowledge USDA-CSREES funding in STEEP-related publications and presentations.

Proposal Review Process:
1. A panel of three scientists not associated with the STEEP program will evaluate and rank all of the proposals (the evaluation form is included, attachment 2, page 7). These outside reviewers will submit their individual ranking of the proposals as well as review comments to the STEEP Committee.
2. Each member of the STEEP Industry Advisory Committee and members of the Technical Committee not submitting a proposal will evaluate and rank each proposal. If a member of the technical committee is listed as PI or a funded cooperator on a proposal, then their experiment station director or research leader will appoint a temporary alternate who will review proposals and attend the STEEP proposal review meeting in their place.
3. One member of the Technical Committee will serve as a lead reviewer for each proposal and a member of the Industry Advisory Committee will serve as a secondary reviewer for each proposal. The lead reviewer will be responsible for leading the proposal discussion.
4. The STEEP Committee requires the lead PI of each proposal, or their representative, to attend an October 30-31, 2006 meeting in Pasco, Washington, (likely at the TRAC) to make a 10-15 minute presentation and answer questions from the review committee (another 5-10 minutes); total time not to exceed 20 minutes per person. The STEEP committee will meet, discuss, and rank proposals (afternoon and evening of October 31, 2006). Timely submission of research progress reports for the STEEP annual report by researchers previously funded by STEEP will be considered when evaluating new proposals for funding. Progress reports are due on September 8, 2006.
5. The ranking of the outside reviewers and the individual rankings of the Industry Advisory and Technical Committees will be used to construct the final rank order of the proposals.

The proposal should be a maximum of six pages for individuals and nine pages for team projects. Previously funded investigators MUST include up to three additional pages for publications, outcomes and impacts from past STEEP-funded research projects (see section headings below). List ONLY those publications and outcomes that are directly attributable to STEEP-funded projects. The proposal must be single-spaced within paragraphs and double-spaced between paragraphs. Use Times New Roman 12 point font and 1 inch margins. All proposals must be written using the following section headings in the order of 1 to 14. Where not applicable, show heading followed by “NA”. Proposals will be screened by the STEEP tri-chairs before they are sent out for review. Any proposal not conforming to the format will be returned to the author and will NOT be considered for further review.
1. **Title**

2. **Investigator(s)** (only identify individuals that will receive funding; include their email addresses and telephone numbers). **Do not list cooperators who will not receive funding.**

3. **Individual or team proposal (specify)**

4. **Agronomic zone of interest (e.g., low, intermediate, high rainfall, irrigated)**

5. **Production system being investigated (e.g., winter wheat-fallow, annual cropping, watershed)**

6. **Statement of problem to be addressed (DO NOT EXCEED 500 WORDS)**

7. **Justification (including potential benefits to growers and/or the environment). Avoid using generic information in the justification. The justification should not exceed one page.**

8. **Literature Review (should not exceed one page)**

9. **Current Work and Relationship to previously funded STEEP projects (if appropriate). See STEEP website (http://pnwsteep.wsu.edu/).**

10. **Previously funded STEEP research. If you have been previously funded by STEEP within the past 10 years, you must provide a list of outcomes, impacts, and STEEP specific publications from these research and technology transfer projects (up to 3 pages). This is a very important component of each proposal and is strongly considered in the evaluation process (see attachment 2, page 7).**

11. **Specific objective(s)**

12. **Procedures by objective – this section should be a detailed explanation of materials and methods. This is the most highly weighed component of the review process for each proposal and does affect your proposal ranking (see attachment 2, page 7).**

13. **Expected outcomes and anticipated impacts. List specific methods by which outcomes will be communicated to both professional peers and grower audiences.**

14. **Timetable**

Attachments to the proposal (not included as part of the six or nine page proposal)

- **Brief vita** of investigator(s) demonstrating qualifications for the proposed research (two pages maximum per PI or coPI)

Budget – CSREES is using a new budget form starting this year. All PIs submitting a proposal MUST use the new form (RESEARCH & RELATED BUDGET - SECTIONS A-K, BUDGET PERIOD 1) (see web address below or attachment 4 on pages 11-13). **Proposals with more than one investigator on the same project will need to complete separate CSREES budget forms** for each investigator when the proposals are submitted and when awards are finalized. **You must use the new USDA-CSREES budget form.** Use one form for each year’s funding and each PI plus one form for the total funding for each PI; for proposals with multiple PIs include a form for each year’s total for all PIs and a total for all years and all PIs. The new budget form consists of three pages – one for salaries (sections A and B), one for equipment, travel and support costs (sections C-E) and one for other direct, indirect, direct, etc (sections F-K). Note that “Materials and Supplies” are now listed under “Other Direct”. Only WSU will subcontract the funds. Be sure to include sufficient travel funds in your request to attend the annual STEEP research review.

Budget justification: NOTE – A poorly written budget justification is the primary reason a tentatively approved STEEP proposal is delayed for final acceptance. Each budget line item must be fully explained and justified for each PI involved in the project on separate pages following the budget pages. Travel costs must be broken down by the purpose of travel (to plots or to meetings, number of travelers, number of trips, and number of miles traveling by car, either rented or personal). The cost breakdown needs to equal the amount in travel requested. Publication costs should be stated in terms of costs per copy times the number of copies. Equipment needs to be itemized and justified. Computer needs (ADPE) must be described. Failure to adequately provide a budget justification may result in budget restriction by USDA. **Pay particular attention to costs that go into Materials and Supplies and All Other Direct Costs.** See attachment 3 for example (pages 8-10).

Current and Pending Support Form for each investigator (see web address below)

Assurance Form (must be signed by each PI, not the Authorized Organizational
Representative, as indicated on the form (see web address below). If there is an assurance issue, your assurance officer will need to sign the form when the proposal is forwarded to USDA.

Click on "SF424 package and CSREES-specific forms", scroll down to "Hard Copy", click on “Budget Period 1”. You will need Adobe 7.0 Professional to download and save the new budget forms.

Click on “Standard Applications Package”.

Send your original proposal and 30 copies to the Agricultural Experiment Station office in the state of the Principle Investigator. It must be received by September 8, 2006.
- Oregon State University – Charles Boyer
- University of Idaho – Greg Bohach
- Washington State University - Ralph Cavalieri

For more information call Donn Thill (208-885-6214), Rich Koenig (509-335-2726), or Don Wysocki (541-278-4396).

Research and Extension Priority Areas from the February 2006 Strategic Planning Meeting in Pasco, WA.

1. Develop profitable and environmentally-sound alternative crop rotations for annual and crop-fallow systems. Rotation crops could include biofuels, green manures, or other alternatives with an emphasis on yield stability and improved economic returns over the rotation.
2. Develop profitable and environmentally-sound alternatives to tillage ranging from low disturbance seeding to reduced tillage systems that aid in capillary disruption and seed zone water conservation but maintain(s) soil quality and residue cover for erosion control. This includes, but is not limited to, residue spreading, processing, and minimum tillage; methods to accelerate residue decomposition; and the fate and effect of residue on soil organic matter and nitrogen pools. This may include alternating no-till with minimum tillage.
3. Develop alternatives for the control of common pests in reduced tillage systems, emphasizing resistance management and genetic, cultural, and/or chemical controls where necessary.
4. Develop improved nutrient management practices for reduced tillage systems that optimize nutrient efficiency and yields and minimize the potential for adverse environmental effects.
5. Enhance i) the dissemination of STEEP research results to traditional and new audiences; and ii) the adoption of conservation technologies by PNW farmers.

STEEP OBJECTIVES: Focus on dry land and irrigated small grain cereal-based conservation farming systems

OBJECTIVE I. Determine the impact of farming practices and systems on soil, water, and air quality.
- Characterize soil quality in terms of soil productivity and environmental functions.
- Determine how soil degradation processes affect resource quality.
- Assess the impacts of conservation practices on soil, water, and air quality and use this information to develop tools for improved conservation planning and resource management.

OBJECTIVE II. Develop new technologies and increase efficiency of inputs that improve profitability of conservation farming systems.
- Develop methods that effectively forecast pest problems and define economic thresholds.
- Develop profitable and environmentally sound conservation practices for pest and plant nutrient management.
- Identify crop plants and plant characteristics that enhance conservation farming systems for specific agronomic zones.
- Develop profitable conservation tillage and cropping systems for lands most vulnerable to resource degradation.

OBJECTIVE III. Assess the profitability of conservation farming systems, document growers’ progress in implementing conservation farming practices, and identify effective and profitable conservation policies.
- Document growers’ progress in implementing conservation practices over time.
• Estimate profitability, risk, and other economic impacts of conservation farming systems.
• Identify cost-effective public policies that promote adoption of conservation farming systems while maintaining farm profitability and regional economic stability.

OBJECTIVE IV. *Accelerate grower evaluation and adaptation of profitable conservation farming systems.*
• Expand the tri-state on-farm testing network and develop improved methods for evaluating conservation farming systems.
• Increase access to integrated management technologies for conservation farming systems by PNW growers and Ag support personnel.
Attachment 1
STEEP Funded Projects for FY97 through FY06

1. Residue production and retention in small grain cereal and legume rotations with different tillage practices (Stephen Guy, ID, 97; Tim Fiez, WA, FY97).
2. PNW STEEP III integrated cropping systems technology transfer (Roger Veseth, ID, OR, WA, FY97 and 98).
3. Disease management for annual crops in low-rainfall regions (Dick Smiley, OR, FY97 - in cooperation with number 2).
4. Alternative crop rotations using no-till in low-rainfall dryland areas (Bill Schillinger, WA, FY97 - in cooperation with number 8).
5. Developing flex cropping options for wheat-fallow rotations (Don Wysocki, OR, FY97 - in cooperation with number 7).
6. On-farm evaluation of cephalosporium stripe severity and yield for wheat cultivars and cultivar mixtures grown in conservation tillage systems (Chris Mundt, OR, FY97).
7. Impact of long-term no till on soil physical, chemical, and microbial properties (Dave Bezdicek, ID and WA, FY97).
8. Developing optimal seeding rates and planting practices to enhance yellow mustard production with low chemical inputs in conservation farming systems (Jack Brown, ID, FY98).
9. Assessing the economic viability of no-till and related conservation systems for various agro-climatic zones in the Pacific Northwest (Doug Young, WA, FY98).
10. Rotation designs for direct seed cropping systems (Dave Huggins, WA, FY98).
11. Modern application of historic crop rotation data (Bill Payne, OR, FY98).
12. Managing the economic transitions to no-till farming in the Pacific Northwest (Doug Young, WA, FY99).
13. Impact of direct seeding on crop water use efficiency, soil physical and microbial properties, and quality of soil organic matter (Dave Bezdicek, WA, FY99).
15. Integrated management system for sustained seed yield of Kentucky bluegrass without burning (Donn Thill, ID, FY99).
16. Enhancing the success of direct-seed systems through the use of case studies to facilitate farmer-to-farmer learning in the Pacific Northwest (Tim Fiez, WA, FY99).
17. Northwest coalition on direct-seed cropping systems research (Jim Cook, WA, FY99)
18. Agronomic and economic evaluation of new cropping systems and their components (Bill Payne, OR, FY99).
19. Develop suitable cultivars and agronomic practices for direct drilling winter canola into cereal stubble (Jack Brown, ID, FY99).
21. Expanding access to PNW STEEP III cropping systems technology (Roger Veseth, ID/ WA/ OR, FY2000).
22. Long-term alternative crop rotations for the low rainfall dryland using no-till: Years 4 through 6 (Bill Schillinger, WA, FY2000).
23. Identifying superior Brassica species and cultivars within species that are suitable for direct-seeding throughout the Pacific Northwest region (Jack Brown, ID, FY2000).
24. New technologies and strategies for managing weeds in conservation cropping systems for dryland wheat (Frank Young, WA/ID, FY2000).
26. Seed placed lime to reduce the acidifying affects of nitrogen fertilizer in long-term direct seed systems (Greg Schwab, WA, FY2001)
27. Assessing the impact of no-till and conventional till on crop, variety, soil, insect and disease response (Stephen Guy, ID, FY2001)
28. Vegetation management with herbicides between crops and during fallow in direct seed dryland winter wheat cropping systems (Joe Yenish, WA, FY2001)
29. Development of residue manipulation systems for direct seeding drills to improve seed opener performance (Eric Drews, UI, FY2001)
30. Updating statistical analysis software for on-farm testing (Russ Karow, OR, FY2001)
31. No-till sowing into standing irrigated stubble instead of burning (Bill Schillinger, WA, FY2001)
32. Rotation effects of alternative crops on spring and winter wheat in direct-seed cropping systems (Jim Cook, WSU, FY2002)
33. Strategies for profitable conservation tillage farming in the Pacific Northwest (Doug Young, WSU, FY2002)
34. Identifying alternate rotation crops for eastern Oregon (Steven Machado, OSU, FY2002)
37. Seasonal and spatial dynamics of rodent damage and effectiveness of management options in no-till crop rotations in Idaho and Washington (Rodney Sayler, WSU, FY2002)
38. The role of alternate hosts in the epidemiology of ascochyta blight of chickpea in reduced tillage cropping systems in the Pacific Northwest (Tobin Peever, WSU, FY2002)
39. Examination of tillage factors, crop type, soils and non-crop habitat upon soil fauna, ground dwelling predators, and aphid density in a small inland PNW watershed (Gary Chang, UI, FY2002)
40. Expanding access to PNW direct seed/conservation tillage systems technology (Roger Veseth, UI, FY2002)
41. Biology and Management of Rattail Fescue in Direct Seed Cropping Systems (Daniel A. Ball, OSU FY2003)
42. Improving Genetic Resistance to Cephalosporium Stripe of Wheat through Field and Toxin Screening and Molecular Mapping of Novel Genetic Stocks (Chris Mundt, OSU, FY2003)
44. Optimizing Plant Genetics and Soil Fertility to Achieve High Grain Protein Content in Hard Red Spring Wheat (Kimberlee, Kidwell, WSU, FY2003)
45. Developing optimal agronomic management systems for direct seeding Brassica oilseed and mustard crops in the Pacific Northwest (Jack Brown, UI, FY2003)
48. Education Solutions to Environmental and Economic Problems. (Mark Quinn and Catherine Perillo, WSU, FY2004)
49. Fertilization of Late-Seeded Wheat in Chemical Fallow. (Larry Lutcher, OSU, FY2004)
51. The Strategic Use of Broadcast and Controlled Release Fertilizer to Facilitate N Applications and Improve Nitrogen Use Efficiency in Direct Seed Systems. (Richard Koenig and David Huggins, WSU/USDA-ARS, FY2004)
52. Assessing the Impact of Direct Seeding (No-Till) and Conventional-Till on Crop, Variety, Soil, and Insect Responses in Years 4-6. (Stephen Guy, Nilsa Bosque-Perez, Sanford Eigenbrode, and Jodi Johnson-Maynard, UI, FY2004)
54. Soil persistence of imazamox herbicide in tilled and direct-seeded dryland winter wheat cropping systems (Donn Thill, Joe Yenish, and Dan Ball, UI, WSU, OSU, FY2005)
55. Identifying superior winter canola cultivars that are suitable for direct seeding in the PNW (Jack Brown and Don Wysocki, UI, OSU, FY2005)
56. Assessing the Impact of Direct Seeding (No-Till) and Conventional-Till on Nitrogen Fertility, Soil, and Insect Responses. (Stephen Guy, Nilsa Bosque-Perez, Sanford Eigenbrode, and Jodi Johnson-Maynard, UI, FY2005)
57. Site-specific N management for direct seed cropping systems. (Dave Huggins, Claudio Stockle, Han Kok, and R. Rossi, USDA-ARS, WSU, UI, FY2005)
58. Examine the effects of cropping systems that include canola, yellow mustard, or oriental mustard on yield of subsequent winter wheat in the PNW (Jack Brown and Don Wysocki, UI, OSU, FY2005)
59. Developing Profitable and Sustainable Cropping Systems for North-Central Oregon and South-Central Washington (Stephen Machado, OSU, FY2006)
60. Developing Chemical Fallow Systems for Intermediate Rainfall Inland PNW Environments (Dan Ball, OSU, WSU, FY2006)
61. Genetic Resistance to Cephalosporium Stripe of Wheat through Field Screening and Molecular Mapping with Novel Genetic Stocks (Chris Mundt, OSU, FY2006)
62. ED-STEEP: Education Solutions to Environmental and Economic Problems (Mark Quinn, WSU, FY2006)
63. Spring Habit Specialty Barley Varieties for Direct-Seeding and Development of Winter Habit Forms (Steve Petrie, OSU, FY2006)
64. The Role of Alternate Hosts in the Epidemiology of Ascochyta Blight of Chickpea in Reduced Tillage Cropping Systems in the Pacific Northwest (Tobin Peever, WSU, FY2006)
65. STEEP Impact Assessment Project (Hans Kok, Don Wysocki, Tri-state effort, FY2006)
Title: ____________________________
PI: ____________________________

<table>
<thead>
<tr>
<th>Rank the Questions</th>
<th>Highest</th>
<th>Lowest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How well does the project meet a STEEP strategic priority?</td>
<td>10 8 6 4 2</td>
<td></td>
</tr>
<tr>
<td>Comments and Statements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. How well does the project address an air, soil, or water quality problem as it</td>
<td>5 4 3 2 1</td>
<td></td>
</tr>
<tr>
<td>relates to PNW dry land and irrigated small grain cereal-based cropping systems?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments and Statements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. How well does the project offer a solution to the defined problem?</td>
<td>10 8 6 4 2</td>
<td></td>
</tr>
<tr>
<td>Comments and Statements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Are the procedures/methods well-defined and scientifically sound?</td>
<td>30 25 20 15 10</td>
<td></td>
</tr>
<tr>
<td>Comments and Statements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. How well does the project increase the opportunities for growers to develop</td>
<td>10 8 6 4 2</td>
<td></td>
</tr>
<tr>
<td>successful farming systems for soil and water conservation?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments and Statements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. PIs with previously funded STEEP projects only – Has the PI published results</td>
<td>0 -4 -6 -8 -10</td>
<td></td>
</tr>
<tr>
<td>from previously funded STEEP research?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments and Statements:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDATION (CIRCLE ONE): FUND MAYBE FUND DON'T FUND

SCORE _____________ (questions 1 through 5)
SCORE _____________ (questions 1 through 6)
Attachment 3

Example of Budget Justification:
Year 1, = $24,974
Salary, Wages, and Fringe Benefits = $21,245:
- Graduate student stipend for 9 months = $16,297; fringe benefits are 1% = $163
- Summer wages for graduate student are $7.84/hr for 560 hours = $4,390; fringe benefits are 9% = $395

Materials and Supplies = $420:
- Wooden plot stakes = $40
- Surveyor flags = $35
- Fertilizer = $40
- Wheat seed = $120
- Plastic bags for soil samples = $40
- Paper bags = $25
- Herbicide = $120 (for all experiments, both years)

Travel = $2,469
- Six trips to Lind, WA @ 220 miles roundtrip from Moscow, ID = 1,320 miles @ $0.45 per mile (UI charge for ¾ ton pickup) = $594
- Six trips to Pendleton, OR @ 400 miles roundtrip from Moscow, ID = 2,400 miles @ $0.45 per mile = $1,080
- Annual STEEP meeting in Pasco, WA for PI and graduate student = $795
 300 miles roundtrip from Moscow, ID @ $0.45 = $135
 Per Diem at $30/day for 3 days per person = $90 X 2 = $180
 Hotel room at $80/night for 2 nights per person = $160 X 2 = $320
 Meeting registration @ $80 persons X 2 = $160

All Other Direct = $840:
- Land rent for 1 acre of research plot ground per year at UI research farm @ 200/acre = $200
- UI Combine use charge @ $60 per hour for 4 hours = $240
- Commercial transportation charge to transport research drill Moscow to Lind and Pendleton = $400

Year 2, = $27,070
Salary, Wages, and Fringe Benefits = $22,113:
- Graduate student stipend for 9 months = $16,962; fringe benefits are 1% = $170
- Summer wages for graduate student are $8.16/hr for 560 hours = $4,570; fringe benefits are 9% = $411

Materials and Supplies = $650 (two experiments ongoing in year two)
- Wooden plot stakes = $80
- Surveyor flags = $70
- Fertilizer = $80
• Wheat seed and mustard seed = $120 + $95 = $215
• Plastic bags for soil samples = $40
• Paper bags = $25
• Petri dishes = $140 (140 @ $1 each)

Travel = $3,027
• Eight trips to Lind, WA @ 220 miles roundtrip from Moscow, ID = 1,760 miles @ $0.45 per mile (UI charge for ¾ ton pickup) = $792
• Eight trips to Pendleton, OR @ 400 miles roundtrip from Moscow, ID = 3,200 miles @ $0.45 per mile = $1,440
• Annual STEEP meeting in Pasco, WA for PI and graduate student = $795
 300 miles roundtrip from Moscow, ID @ $0.45 = $135
 Per Diem at $30/day for 3 days per person = $90 X 2 = $180
 Hotel room at $80/night for 2 nights per person = $160 X 2 = $320
 Meeting registration @ $80 persons X 2 = $160

All Other Direct = $1,280:
• Land rent for 2 acres of research plot ground per year at UI research farm @ $200/acre = $400
• Combine use charge @ $60 per hour for 8 hours = $480
• Commercial transportation charge to transport research drill Moscow to Lind and Pendleton = $400

Year 3, = $27,484
Salary, Wages, and Fringe Benefits = $23,045:
• Graduate student stipend for 9 months = $17,680; fringe benefits are 1% = $177
• Summer wages for graduate student are $8.50/hr for 560 hours = $4,760; fringe benefits are 9% = $428

Materials and Supplies = $650:
• Wooden plot stakes = $40
• Surveyor flags = $35
• Fertilizer = $40
• Mustard seeded = $95
• Paper bags = $20
• Petri dishes = $420 (500 @ $0.84 each)

Travel = $2,469
• Six trips to Lind, WA @ 220 miles roundtrip from Moscow, ID = 1,320 miles @ $0.45 per mile (UI charge for ¾ ton pickup) = $594
• Six trips to Pendleton, OR @ 400 miles roundtrip from Moscow, ID = 2,400 miles @ $0.45 per mile = $1,080
• Annual STEEP meeting in Pasco, WA for PI and graduate student = $795
 300 miles roundtrip from Moscow, ID @ $0.45 = $135
 Per Diem at $30/day for 3 days per person = $90 X 2 = $180
Hotel room at $80/night for 2 nights per person = $160 X 2 = $320
Meeting registration @ $80 persons X 2 = $160

Publication Costs and Page Charges = $480
 - Weed Technology Journal at $60 per page for an 8 page article

All Other Direct = $840:
 - Land rent for 1 acre of research plot ground per year at UI research farm @ 200/acre = $200
 - Combine use charge @ $60 per hour for 4 hours = $240
 - Commercial transportation charge to transport research drill Moscow to Lind and Pendleton = $400
RESEARCH & RELATED BUDGET - SECTION A & B, BUDGET PERIOD 1

*ORGANIZATIONAL DUNS: ____________________________

*Budget Type: Project Subaward/Consortium

Enter name of Organization: ____________________________

Reset Entries *Start Date: ____________________________ *End Date: ____________________________ Budget Period: 1

(If the Reset entries button is pressed, please navigate to previous year to enable the submission of the form.)

A. Senior/Key Person

<table>
<thead>
<tr>
<th>Prefix</th>
<th>*First Name</th>
<th>Middle Name</th>
<th>*Last Name</th>
<th>Suffix</th>
<th>*Project Role</th>
<th>Cal. Role</th>
<th>Acad. Role</th>
<th>Sum. Role</th>
<th>*Requested Months</th>
<th>Base Salary ($)</th>
<th>Benefits ($)</th>
<th>*Funds Requested ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PD/PI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total Funds requested for all Senior Key Persons in the attached file: 0

Total Senior/Key Person: 0

B. Other Personnel

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Cal. Role</th>
<th>Acad. Role</th>
<th>Sum. Role</th>
<th>*Requested Months</th>
<th>Base Salary ($)</th>
<th>Benefits ($)</th>
<th>*Funds Requested ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Doctoral Associates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secretarial/Clerical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Number Other Personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Other Personnel: 0

Total Salary, Wages and Fringe Benefits (A+B): 0
C. Equipment Description

List items and dollar amount for each item exceeding $5,000

<table>
<thead>
<tr>
<th>Equipment Item</th>
<th>Requested ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total funds requested for all equipment listed in the attached file

Total Equipment: 0

D. Travel

1. Domestic Travel Costs (Incl. Canada, Mexico and U.S. Possessions)
2. Foreign Travel Costs

Total Travel Cost: 0

E. Participant/Trainee Support Costs

1. Tuition/Fees/Health Insurance
2. Stipends
3. Travel
4. Subsistence
5. Other

Number of Participants/Trainees

Total Participant/Trainee Support Costs: 0
F. Other Direct Costs

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>Funds Requested ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Materials and Supplies</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Publication Costs</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Consultant Services</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ADP/Computer Services</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Subawards/Consortium/Contractual Costs</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Equipment or Facility Rental/User Fees</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Alterations and Renovations</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Other Direct Costs: $0

G. Direct Costs

Total Direct Costs (A thru F): $0

H. Indirect Costs

Total Indirect Costs: $0

I. Total Direct and Indirect Costs

Total Direct and Indirect Institutional Costs (G + H): $0

J. Fee

Fee: $0

K. *Budget Justification

(Only attach one file)